Modification of Lightweight Aggregates’ Microstructure by Used Motor Oil Addition

نویسندگان

  • Małgorzata Franus
  • Grzegorz Jozefaciuk
  • Lidia Bandura
  • Krzysztof Lamorski
  • Mieczysław Hajnos
  • Wojciech Franus
چکیده

An admixture of lightweight aggregate substrates (beidellitic clay containing 10 wt % of natural clinoptilolite or Na-P1 zeolite) with used motor oil (1 wt %-8 wt %) caused marked changes in the aggregates' microstructure, measured by a combination of mercury porosimetry (MIP), microtomography (MT), and scanning electron microscopy. Maximum porosity was produced at low (1%-2%) oil concentrations and it dropped at higher concentrations, opposite to the aggregates' bulk density. Average pore radii, measured by MIP, decreased with an increasing oil concentration, whereas larger (MT) pore sizes tended to increase. Fractal dimension, derived from MIP data, changed similarly to the MIP pore radius, while that derived from MT remained unaltered. Solid phase density, measured by helium pycnometry, initially dropped slightly and then increased with the amount of oil added, which was most probably connected to changes in the formation of extremely small closed pores that were not available for He atoms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Spent Zeolite Sorbents for the Preparation of Lightweight Aggregates Differing in Microstructure

Lightweight aggregates (LWAs) made by sintering beidellitic clay deposits at high temperatures, with and without the addition of spent zeolitic sorbents (clinoptilolitic tuff and Na-P1 made from fly ash) containing diesel oil, were investigated. Mineral composition of the aggregates determined by X-ray diffraction was highly uniformized in respect of the initial composition of the substrates. T...

متن کامل

Experimental Study of the Combined Use of Fiber and Nano Silica Particles on the Properties of Lightweight Self Compacting Concrete

In fiber concretes, microcracks in the boundary area between the cement paste and the surface of aggregates or fibers are higher. Natural and artificial pozzolans can be used for reinforcing this area. In this research, the combination of glass fiber, zeolite, and nano silica particles were used in lightweight self-compacting concrete containing scoria. Fiber volume fractions between 0% to 1.5%...

متن کامل

Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry

The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstru...

متن کامل

Investigating properties of fresh and hardened self-compacting concrete made of recycled aggregates

Self-compacting concrete is a new high performance concrete with high ductility and segregation resistance. In recent years, construction material manufacturers have focused their attention on lightweight concrete and have strived to use lightweight concrete, if possible, in load-bearing parts of buildings. Concrete with both self-compacting and lightweight properties is favourable in this cont...

متن کامل

Cyclic Loading Tests for Cold-Formed Steel Wall Frames with Lightweight Concrete

Lightweight steel framing is a method in housing and construction that have been widely used in lightweight steel construction. In this method, the structure is built by cold formed steel elements. They are cost-effective, light, and easy to assemble. However, the performance of lateral load resisting systems in cold-formed steel structures specially the behavior of cold-formed steel shear wall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016